Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)
S(mark(X)) → S(X)
PROPER(adx(X)) → PROPER(X)
INCR(mark(X)) → INCR(X)
ACTIVE(adx(cons(X, L))) → ADX(L)
PROPER(incr(X)) → INCR(proper(X))
PROPER(incr(X)) → PROPER(X)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → TAIL(active(X))
HEAD(mark(X)) → HEAD(X)
ACTIVE(incr(X)) → ACTIVE(X)
INCR(ok(X)) → INCR(X)
ADX(mark(X)) → ADX(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(tail(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
ACTIVE(adx(X)) → ADX(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
HEAD(ok(X)) → HEAD(X)
ACTIVE(zeros) → CONS(0, zeros)
TOP(mark(X)) → PROPER(X)
ACTIVE(adx(cons(X, L))) → CONS(X, adx(L))
TAIL(ok(X)) → TAIL(X)
ACTIVE(incr(cons(X, L))) → INCR(L)
PROPER(adx(X)) → ADX(proper(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(incr(cons(X, L))) → S(X)
PROPER(s(X)) → S(proper(X))
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
S(ok(X)) → S(X)
ACTIVE(nats) → ADX(zeros)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
TAIL(mark(X)) → TAIL(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(adx(cons(X, L))) → INCR(cons(X, adx(L)))
ACTIVE(incr(X)) → INCR(active(X))
ACTIVE(incr(cons(X, L))) → CONS(s(X), incr(L))
ADX(ok(X)) → ADX(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
PROPER(cons(X1, X2)) → PROPER(X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)
S(mark(X)) → S(X)
PROPER(adx(X)) → PROPER(X)
INCR(mark(X)) → INCR(X)
ACTIVE(adx(cons(X, L))) → ADX(L)
PROPER(incr(X)) → INCR(proper(X))
PROPER(incr(X)) → PROPER(X)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → TAIL(active(X))
HEAD(mark(X)) → HEAD(X)
ACTIVE(incr(X)) → ACTIVE(X)
INCR(ok(X)) → INCR(X)
ADX(mark(X)) → ADX(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(tail(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
ACTIVE(adx(X)) → ADX(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
HEAD(ok(X)) → HEAD(X)
ACTIVE(zeros) → CONS(0, zeros)
TOP(mark(X)) → PROPER(X)
ACTIVE(adx(cons(X, L))) → CONS(X, adx(L))
TAIL(ok(X)) → TAIL(X)
ACTIVE(incr(cons(X, L))) → INCR(L)
PROPER(adx(X)) → ADX(proper(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(incr(cons(X, L))) → S(X)
PROPER(s(X)) → S(proper(X))
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(s(X)) → ACTIVE(X)
S(ok(X)) → S(X)
ACTIVE(nats) → ADX(zeros)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
TAIL(mark(X)) → TAIL(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(adx(cons(X, L))) → INCR(cons(X, adx(L)))
ACTIVE(incr(X)) → INCR(active(X))
ACTIVE(incr(cons(X, L))) → CONS(s(X), incr(L))
ADX(ok(X)) → ADX(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
PROPER(cons(X1, X2)) → PROPER(X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)
PROPER(adx(X)) → PROPER(X)
S(mark(X)) → S(X)
INCR(mark(X)) → INCR(X)
ACTIVE(adx(cons(X, L))) → ADX(L)
PROPER(incr(X)) → INCR(proper(X))
PROPER(incr(X)) → PROPER(X)
TOP(mark(X)) → TOP(proper(X))
ACTIVE(tail(X)) → TAIL(active(X))
HEAD(mark(X)) → HEAD(X)
ACTIVE(incr(X)) → ACTIVE(X)
INCR(ok(X)) → INCR(X)
ADX(mark(X)) → ADX(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(tail(X)) → PROPER(X)
TOP(ok(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
ACTIVE(adx(X)) → ADX(active(X))
HEAD(ok(X)) → HEAD(X)
ACTIVE(tail(X)) → ACTIVE(X)
TOP(mark(X)) → PROPER(X)
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(adx(cons(X, L))) → CONS(X, adx(L))
TAIL(ok(X)) → TAIL(X)
ACTIVE(incr(cons(X, L))) → INCR(L)
PROPER(adx(X)) → ADX(proper(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(incr(cons(X, L))) → S(X)
PROPER(s(X)) → S(proper(X))
S(ok(X)) → S(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(nats) → ADX(zeros)
CONS(mark(X1), X2) → CONS(X1, X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
TAIL(mark(X)) → TAIL(X)
PROPER(head(X)) → HEAD(proper(X))
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(adx(cons(X, L))) → INCR(cons(X, adx(L)))
ACTIVE(incr(X)) → INCR(active(X))
ACTIVE(incr(cons(X, L))) → CONS(s(X), incr(L))
ADX(ok(X)) → ADX(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
TOP(ok(X)) → TOP(active(X))
PROPER(cons(X1, X2)) → PROPER(X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 9 SCCs with 22 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)
TAIL(ok(X)) → TAIL(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.

TAIL(ok(X)) → TAIL(X)
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[TAIL1, mark1]

Status:
mark1: multiset
TAIL1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [2].
Quasi-Precedence:
[TAIL1, ok1]

Status:
TAIL1: multiset
ok1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


HEAD(ok(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.

HEAD(mark(X)) → HEAD(X)
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[HEAD1, ok1]

Status:
ok1: multiset
HEAD1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [2].
Quasi-Precedence:
[HEAD1, mark1]

Status:
mark1: multiset
HEAD1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADX(ok(X)) → ADX(X)
ADX(mark(X)) → ADX(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADX(ok(X)) → ADX(X)
The remaining pairs can at least be oriented weakly.

ADX(mark(X)) → ADX(X)
Used ordering: Combined order from the following AFS and order.
ADX(x1)  =  ADX(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[ADX1, ok1]

Status:
ok1: multiset
ADX1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ADX(mark(X)) → ADX(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ADX(mark(X)) → ADX(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ADX(x1)  =  ADX(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [2].
Quasi-Precedence:
[ADX1, mark1]

Status:
mark1: multiset
ADX1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.

S(mark(X)) → S(X)
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[S1, ok1]

Status:
ok1: multiset
S1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [2].
Quasi-Precedence:
[S1, mark1]

Status:
mark1: multiset
S1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
mark1 > CONS2

Status:
mark1: [1]
CONS2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [2].
Quasi-Precedence:
[CONS1, ok1]

Status:
CONS1: multiset
ok1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(ok(X)) → INCR(X)
INCR(mark(X)) → INCR(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


INCR(ok(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.

INCR(mark(X)) → INCR(X)
Used ordering: Combined order from the following AFS and order.
INCR(x1)  =  INCR(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[INCR1, ok1]

Status:
ok1: multiset
INCR1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(mark(X)) → INCR(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


INCR(mark(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
INCR(x1)  =  INCR(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [2].
Quasi-Precedence:
[INCR1, mark1]

Status:
mark1: multiset
INCR1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(incr(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(adx(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(adx(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(s(X)) → PROPER(X)
PROPER(incr(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
incr(x1)  =  x1
tail(x1)  =  x1
head(x1)  =  x1
adx(x1)  =  adx(x1)

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, adx1]

Status:
PROPER1: [1]
adx1: multiset
cons2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(incr(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(tail(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(s(X)) → PROPER(X)
PROPER(incr(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  x1
incr(x1)  =  x1
tail(x1)  =  tail(x1)
head(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, tail1]

Status:
PROPER1: multiset
tail1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(incr(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(incr(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  s(x1)
incr(x1)  =  x1
head(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, s1]

Status:
PROPER1: multiset
s1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(incr(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.

PROPER(head(X)) → PROPER(X)
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
incr(x1)  =  incr(x1)
head(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, incr1]

Status:
incr1: multiset
PROPER1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PROPER(head(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
head(x1)  =  head(x1)

Recursive path order with status [2].
Quasi-Precedence:
[PROPER1, head1]

Status:
PROPER1: multiset
head1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ PisEmptyProof
              ↳ QDP
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(incr(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(adx(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(incr(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
head(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
tail(x1)  =  x1
adx(x1)  =  adx(x1)
incr(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
cons2 > [ACTIVE1, adx1]

Status:
ACTIVE1: multiset
adx1: multiset
cons2: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(incr(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(tail(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(incr(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
head(x1)  =  x1
s(x1)  =  x1
tail(x1)  =  tail(x1)
incr(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[ACTIVE1, tail1]

Status:
ACTIVE1: multiset
tail1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(incr(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(head(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(incr(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
head(x1)  =  head(x1)
s(x1)  =  x1
incr(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[ACTIVE1, head1]

Status:
ACTIVE1: multiset
head1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(incr(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.

ACTIVE(incr(X)) → ACTIVE(X)
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
s(x1)  =  s(x1)
incr(x1)  =  x1

Recursive path order with status [2].
Quasi-Precedence:
[ACTIVE1, s1]

Status:
ACTIVE1: multiset
s1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
QDP
                                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVE(incr(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
incr(x1)  =  incr(x1)

Recursive path order with status [2].
Quasi-Precedence:
[ACTIVE1, incr1]

Status:
incr1: multiset
ACTIVE1: multiset


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ QDPOrderProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.